Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38731561

RESUMO

Polyethylene glycol (PEG) is one of the environmentally benign solvent options for green chemistry. It readily absorbs water when exposed to the atmosphere. The Molecular Dynamics (MD) simulations of PEG200, a commercial mixture of low molecular weight polyethyelene glycol oligomers, as well as di-, tetra-, and hexaethylene glycol are presented to study the effect of added water impurities up to a weight fraction of 0.020, which covers the typical range of water impurities due to water absorption from the atmosphere. Each system was simulated a total of four times using different combinations of two force fields for the water (SPC/E and TIP4P/2005) and two force fields for the PEG and oligomer (OPLS-AA and modified OPLS-AA). The observed trends in the effects of water addition were qualitatively quite robust with respect to these force field combinations and showed that the water does not aggregate but forms hydrogen bonds at most between two water molecules. In general, the added water causes overall either no or very small and nuanced effects in the simulation results. Specifically, the obtained water RDFs are mostly identical regardless of the water content. The added water reduces oligomer hydrogen bonding interactions overall as it competes and forms hydrogen bonds with the oligomers. The loss of intramolecular oligomer hydrogen bonding is in part compensated by oligomers switching from inter- to intramolecular hydrogen bonding. The interplay of the competing hydrogen bonding interactions leads to the presence of shallow extrema with respect to the water weight fraction dependencies for densities, viscosities, and self-diffusion coefficients, in contrast to experimental measurements, which show monotonous dependencies. However, these trends are very small in magnitude and thus confirm the experimentally observed insensitivity of these physical properties to the presence of water impurities.

2.
J Phys Chem B ; 127(5): 1178-1196, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36700884

RESUMO

Molecular dynamics (MD) simulations are reported for [polyethylene glycol (PEG)200], a polydisperse mixture of ethylene glycol oligomers with an average molar weight of 200 g·mol-1. As a first step, available force fields for describing ethylene glycol oligomers were tested on how accurately they reproduced experimental properties. They were found to all fall short on either reproducing density, a static property, or the self-diffusion coefficient, a dynamic property. Discrepancies with the experimental data increased with the increasing size of the tested ethylene glycol oligomer. From the available force fields, the optimized potential for liquid simulation (OPLS) force field was used to further investigate which adjustments to the force field would improve the agreement of simulated physical properties with experimental ones. Two parameters were identified and adjusted, the (HO)-C-C-O proper dihedral potential and the polarity of the hydroxy group. The parameter adjustments depended on the size of the ethylene glycol oligomer. Next, PEG200 was simulated with the OPLS force field with and without modifications to inspect their effects on the simulation results. The modifications to the OPLS force field significantly decreased hydrogen bonding overall and increased the propensity of intramolecular hydrogen bond formation at the cost of intermolecular hydrogen bond formation. Moreover, some of the tri- and more so tetraethylene glycol formed intramolecular hydrogen bonds between the hydroxy end groups while still maintaining strong intramolecular interactions with the ether oxygen atoms. These observations allowed the interpretation of the obtained RDFs as well as structural properties such as the average end-to-end distances and the average radii of gyration. The MD simulations with and without the modifications showed no evidence of preferential association of like-oligomers to form clusters nor any evidence of long-range ordering such as a side-by-side stacking of ethylene glycol oligomers. Instead, the simulation results support the picture of PEG200 being a random mixture of its ethylene glycol oligomer components. Finally, additional MD simulations of a binary mixture of tri-and hexaethylene glycol with the same average molar weight as PEG200 revealed very similar structural and physical properties as for PEG200.

3.
J Phys Chem B ; 124(41): 9115-9125, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32924487

RESUMO

An experimental study is presented for the reverse micellar system of 15% by mass polydisperse hexaethylene glycol monodecylether (C10E6) in cyclohexane with varying amounts of added water up to 4% by mass. Measurements of viscosity and self-diffusion coefficients were taken as a function of temperature between 10 and 45 °C at varying sample water loads but fixed C10E6/cyclohexane composition. The results were used to inspect the validity of the Stokes-Einstein equation for this system. Unreasonably small reverse average micelle radii and aggregation numbers were obtained with the Stokes-Einstein equation, but reasonable values for these quantities were obtained using the ratio of surfactant-to-cyclohexane self-diffusion coefficients. While bulk viscosity increased with increasing water load, a concurrent expected decrease of self-diffusion coefficient was only observed for the surfactant and water but not for cyclohexane, which showed independence of water load. Moreover, a spread of self-diffusion coefficients was observed for the protons associated with the ethylene oxide repeat unit in samples with polydisperse C10E6 but not in a sample with monodisperse C10E6. These findings were interpreted by the presence of reverse micelle to reverse micelle hopping motions that with higher water load become increasingly selective toward C10E6 molecules with short ethylene oxide repeat units, while those with long ethylene oxide repeat units remain trapped within the reverse micelle because of the increased hydrogen bonding interactions with the water inside the growing core of the reverse micelle. Despite the observed breakdown of the Stokes-Einstein equation, the temperature dependence of the viscosities and self-diffusion coefficients was found to follow Arrhenius behavior over the investigated range of temperatures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...